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Abstract ---Existing failure criteria for the bearing capacity of Iloating ice sheets predict the load for
the occurrence of the first radial crack or a circumferential crack. when the maximum stress obtained
from an elastic analysis in the ice equals the tensile strength. From full-scale and small-scale tests.
the ultimate load to cause complete penetration of a fioating ice sheet is much higher than that to
cause the lirst radial crack. This can be attributed to wedging action during deformation of a radially
cracked ice sheet. We present three approaches taken to detennine t.he ice penetration force: I I)
plastic limit analysis. (2) small-scale experiments. and (3) full-scale measurements in the field.

Small-scale experiments were conducted with freshwater ice in the basin at the laboratory 10

understand the wedging ,Iction during the vertical loading of floating ice sheets. Results of the
following series of experiments are presented: (a) heams with fixed ends, (b) paired cantilever bcams
arranged free-end to free-end and loaded together. Ie) beams with an apparatus inserted between
the free ends of paired cantilever beams to measure the in-plane forc(~ during vertical loading. and
(d) vertical downward loading of l10ating ice sheets with fix,~d and free boundaries. Analysis of the
data from the beam tests reveals that the wedging action results in the developnlCnt of wedging
pressure in the top or bottom third of the ice thickness. and this resulis in a resisting moment tlla t
counters the deformation of a cracked ice sheet. A.n icc sheet i',ttached to the basin wall inhibits thc
propagation of radial cracks because of lhe wedging action, whereas an iC{~ sheet f!'e(, at the edges
from the surrounding ice sheet tilils by the propagation of radial cracks all the way to the ice sheet's
th~e boundary. The dillerence between the two breakthrough loads of the free and lhe fixed ice
sheets can be attributed to wedging action. 'I'he results of the beam tests are used in the resulls of
plastic limit analysis to predict the breakthrough loads of Iloat.mg icc sheets, which are in agrecm.enl
with loads measured during fILII-scale and small-scale experinlenh. 199R Elsevier Science Ltd
A11 rights reserved.

I. I]\;TRODUC·I10;..J

In cold regions, floating icc sheets are often used as roads, airfields. parking lots, and
construction platforms (Ashton. 1986). At times. submarines operating under the Arctic
ice cover need to surface by lifting up and penetrating a floating ice sheet (Dane. 1993). To
conduct these operations safely. it is important 10 know the breakthrough loads of !loating
ice sheets.

Because ice exists at temperatures close to its melting temperature. the creep of ice \vill
lead to steadily increasing deflections under a static load. On the other hand, a 1l0ating ice
sheet. when excited near its natural frequency of oscillations, will undergo def1ections larger
than those expected for static loads. Therefore. the response of a f10ating ice sheet depends
on the duration and history of loading, \vhich can fall into the 1~)lIowing three categories
(Ashton. 1986): (I) quasi-static loads, such as those imposed by slowly moving vehicles.
(2) moving loads that may excite waves in the ice water system to oscillate at or near its
natural frequency, and (3) long-term loads. such as those imposed by parked vehicles,
stored materials. or drilling plat1~)rms. In existing literature. ice is assumed to behave as an
elastic material for evaluating the dellections of and stresses in an ice sheet due to short­
term and moving loads. whereas creep deformation becomes important for long-term loads
(Beltaos and Lipsett. 1979). Based on the results of laboratory and field tests. Sinha (1996)
proposed that an elasto-delayedelastic model for primary creep of ice can be combined
with the result of elastic theory of plates on an clastic foundation (Hertz. 1884; Wyman
1950) to predict deflections due to short-term loads. In this paper. attention is focused on
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short-term loading of floating ice sheets to failure. The load is applied over a given area
and gradually increased until breakthrough takes place. The theoretical treatment of the
bearing capacity of 1l0ating ice sheets is quite extensive and may be found in textbooks
(e.g., Michel, 1978: Ashton, 1986) and in reports (e.g., Kerr, 1975: Nevel, 1976). However.
the prediction of breakthrough loads for noating ice sheets is empirically based on full­
scale experimental data.

Full-scale tests to determine breakthrough loads were conducted by Frankenstein
(1963, 1966) on fi-eshwater lake ice in Michigan, North Dakota, and /\laska, and by
Lichtenberger et al. (1974) on sea ice in Resolute Bay, Northwest Territory, Canada. [n
these tests, the ice sheets were loaded by pumping water into large-diameter drums placed
on them. The total loads and deflections at a few points were measured during the entire
period of loading until breakthrough occurred. During the period of loading, many radial
cracks formed first, followed by the fonnation of a few circumferential cracks prior to
breakthrough.

Gold (1971) compiled data on the failure of floating ice sheets during logging and
other operations. He presented the results of his survey in the form of two graphs: (I) a
plot of load vs thickness associated with observed failure of ice covers, and (2) a similar
plot associated with successful use of ice covers. He recommended that a good ice cover
can safely support a load of p= 1750112

, where P is the load in kilone\vtol1s (kN) and 11 is
the ice thickness in meters (m). He also noted that failures of ice covers were reported for
loads as low as P 0= 35011' and as high as P = 7000h'.He attributed the reasons for low
bearing capacities of a tloating ice cover to vehicle speed, thermal stress due to decrease in
temperature, fatigue caused by repeated loading, and the quality of the ice cover. There is
a need to supplement these data with other relevant information on load distribution. rate
of loading, and ice temperature to understand the large scatter in the data.

Beltaos (1978) conducted a series of breakthrough tests by loading floating ice sheets
for long periods of time. Using the results of his and others' tests, he proposed a failure
criterion based on the concept of strain energy per unit volume. Using his empirical results
on long-term loading tests. he recommended that a safe level of instantaneous loading on
floating ice sheets is P I 790/r'.

During the initial stages of loading, the deflections and stresses in a lloating ice sheet
can be obtained from axisymmetric, elastic analysis (lIertz, 1884: Wyman. 1950). The
maximum tensile stress usually occurs in the center of the loading area on the top or bottom
of an ice sheet for upward or (!<nvnward loads, respectively. When the maximum tensile
stress (Westergaard, 1926) eq uals the tensile strength of ice, radial cracks form from the
loading area to a certain distance away. While the formation of radial cracks is an indication
of high loads on a t10ating ice sheet. the breakthrough load is much higher than that which
forms radial cracks. Although the middle surface of an ice sheet expands as a result of
vertical dellections that cause separation between the vertical faces of the radial cracks, the
bending action causes interference between the faces either at the top for downward
loading or at the bottom for upward loading of an ice sheet. Hellan (1984) presented an
axisymmetric elastic analysis of a plate with finite-size radial cracks and takes the above­
mentioned interference into account. Recently, Dempsey el al. (I (95) have presented an
elastic analysis of radial cracking with closure for a circular. clamped plate (with no elastic
foundation) loaded by a concentrated load at the center. Bazant ('I al. (1995) also discussed
"the dome effect" caused by closure of radial cracks and presented some preliminary results
of their analysis. Sodhi (1996) presented a detlection analysis of radially cracked, tloating
ice sheets by the finite element method. The results of this analysis were used to obtain the
energy release rate (or the crack extension force) for radial cracks. The elastic energy release
rate goes to zero when the radial cracks are about twice the characteristic length of a
floating ice sheet. The length of radial cracks from this analysis are in agreement with those
observed during full-scale and small-scale experiments.

An increase in load on a radially cracked ice sheet causes many circumferential cracks
to form within a certain distance from the load (Frankenstein, 1963, 1966: Lichtenberger
et al., 1974). Despite the formation of radial and circumferential cracks, at10ating ice sheet
does not Llil suddenly and remains capa ble of supporting vertical loads. This is only possible
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because the fractured ice is surrounded by an intact ice sheeL which restrains the blocks
from expansion and induces wedging action between them.

Sodhi (1995) obtained an estimate of the breakthrough load through a plastic limit
analysis of the deforming region close to the load by assuming a velocity field and equating
the rate of energy dissipation due to wedging (or compression) in the tangential and radial
directions to the rate of work done by the load. In the range of ice thickness between
0.2 and 2.0 m, the agreement between the theoretical estimates and the experimental
breakthrough loads is good, as long as energy dissipation due to radial deformation is
ignored because of the formation of many circumferential cracks prior to breakthrough.

In this paper. we present the three approaches taken to obtain the load required to
penetrate floating ice sheets. \Ve conducted (I) plastic limit analysis of deforming region
near the vertical load, (2) small-scale experiments to understand the wedging action during
large deformation of ice sheets. and (3) full-scale measurements of ice penetration loads in
the field. The overall objective is to validate the results of theoretical and small-scale
experimental studies with full-scale measurements of ice penetration force.

2. ESTIMATION OF BREAKTHROUGII L.OADS BY YIELD LINE 1\1FTHOD

During the initial stages of loading of a floating ice sheet (i.e., small deflections), an
area with a radius of 34 times the characteristic length is deflected vertically by the load.
The characteristic length (I), which is obtained from the difTerential equation governing an
elastie deflection of a floating ice sheet (Timoshenko and Woinowksy-Krieger. 1(59), is the
fourth root of the ratio of the flexural rigidity to the foundation modulus of an ice sheet.
For freshwater ice, Gold (1971) suggested that 1= 16h3

\ where h is the ice thickness in m.
The coeflicient of h' 4 depends on the elastic modulus of the ice, and it is estimated to be
about 13.5 for sea ice. The radius at which vertical del1ections are negligible is about 5070
times the ice thickness.

When the maximum tensile stress due to elastic deformation in ice exceeds the tensile
strength of ice, radial cracks form in the vicinity of the load. Observations made during
field and laboratory experiments indicate that the large dellections during penetration or
breakthrough are confined to a region close to the applied load, generally less than 1020
times the ice thickness. This large deformation is superimposed on the large-area dellection
described above. For sea ice, Lichtenberger 1'1 al. (1974) reported the initial formation of
circumferential cracks at a distance of about 5·8 times the ice thickness from the edge of
the distributed load. For freshwater ice, Frankenstein (1963. 1(66) reported these distances
to be in the range of 1327 times the ice thickness. Both reported formation of more
circumferential cracks of smaller radii as the deformation increased with the applied load.
It is quite likely that such circumferential cracks also formed along the perimeter of the
distributed load at the bottom of the ice sheet. As described later, many (510) cir­
cumferential cracks formed during small-scale experiments for the present study. The
sequence of formation of these cracks was that the 1~lrthest one formed first, followed by
other cracks closer to and around the area of load application.

Taking these observations into account. we first consider an axisymmetric formulation.
which can be modified to consider other shapes of the loading area, to estilnate the
breakthrough load using plastic limit analysis. It is assumed that a total downward load P
is distributed above an ice sheet over a circular area of radius a. as shown in Fig. I. As
the overall deformation proceeds, radial and circumferential cracks form, and the local
deformation of ice takes place between radii a and b. It is assumed that the defonnation
takes place by formation of a continuous yield line field (Skrzpek, 1(93) in the radial
direction and that the resisting mornent per unit length of a yield line is ."10 , The following
vertical velocity field (Ii':= dll/dt) is assumed in terms of the vertical velocity (Ii,,) at the
load:

Ii
Ii' ==

b
fora:':;,.:,,:/> (1)

where,. is the radius of a point on the middle surface (z 0) of the ice sheet. Figure I
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'------.., (\-------------v'---
Fig. I. Axisymmetric deformation of an ice sheet loaded over a circubr area (0 < r < 0).

shows a sketch of a deflected ice sheet at an instant in time with respect to radial distance
r and vertical downward deflection w. Because the velocity IV is zero at r b, the assumed
velocity field is relative to the velocity at r = b from large-area deformation around the
load. The rates of curvature change in the radial and tangential directions are given by:

I dli'
h' (10 == ._--~- ==

r dr
I li'o

rb-a
(2)

Equating the rate of work done by the load P to the rate of energy dissipation in the
deforming region of the ice sheet, we get:

Pli'o = 11'2" rl'(Molk,,1 + M o lk'l!Il)rdrdO+2n(Mo I8"a+ M ol8h lb)
... 0 .JO

( I
i> \

+ Pwg 2n " WliT dr +a" 11'0 »'0) , (3)
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where Pw9 is the specific weight of water, and 0" and 0 h are the rates of change of slope
discontinuities at r = a and r = b, respectively. The first term is the rate ofenergy dissipation
in the annular area between radii a and b, the second term accounts for the rate of energy
dissipation along the circumferential cracks at radii a and b due to local deformation in the
radial direction, and the third term is the rate of work done against buoyancy forces. Noting
that le,,1 = 10bl = Ii·o/(b-a). and substituting for the other variables in eqn (3) from eqns
(I) and (2) we get:

b+a I , ,
P = 2nMo+2nM [) h. + L,: np",gwo (b~ +. 2ab + 3a")

a 0
(4)

The third term. derived from the buoyancy forces, can be small in comparison to the
first two terms under certain conditions. We can ignore it for the purpose of comparing the
above result with the collapse loads of plates not supported on an elastic foundation (e.g.,
Skrzypek, 1993). The second term in eqn (4) accounts for the rate of energy dissipation
because of interference between the rotating ice block and the adjoining ice sheet. It radius
a is equal to zero. we get a collapse load [i.e., the first two terms in eqn (4)] P = 4nM(b
which is the same as the result for a concentrated load acting on a built-in (or fixed) plate
at r = b (Skryzpek. 1993). The second term becomes large when radius b is almost equal to
radius a. which is a situation occurring during shear failure and not applicable to the
estimation of failure load by eqn (4). During experiments done by Frankenstein (1963,
1966). shear failure occurred during concentrated load tests, and the breakthrough for a
concentrated load occurred at a lower load than for a distributed load. Sodhi (1995)
discussed the shear failure of an ice sheet and concluded that if the load is distributed over
a circular area with a diameter more than l\vice the ice thickness, the failure will take place
in bending and not in shear. The holes made in the ice sheet during distributed load tests
were always greater than the size of the loaded area. In other words. the radius b was
greater than radius a bv several ice thicknesses. If the interference at radii a and his non-
~ .
existent because of many circumferential cracks occurring in the ice sheet at r > b, the
resisting moment along those circumferential cracks can be assumed to be zero, and we get
a collapse load [i.e., the first term in eqn (4)] P = 2nAl(b which is the same as the result for
a concentrated load acting on a simply supported plate at r = b (Skryzypek, 1993). It is
noteworthy that. for a simply supported boundary condition, we get the same collapse load
for a distributed load acting on a circular area of radius a as that for a concentrated load
and that the collapse load docs not depend on radius h. This result is merely the result of
plastic limit analysis under the assumed velocity field.

l SMALL-SCALE EXPERIMENTAL STUDIES

3.1. Setup and procedure
We conducted all tests for this study with freshwater. columnar ice. We used wet

seeding with small ice crystals to start the ice growth when the water and the ambient
temperatures were 0 and - IO'C, respectively. Seeding was done by spraying a mist of
water with compressed air above the water surface in the basin. This result in fine ice
crystals forming in the air and settling on the water surface. This process yields an ice sheet
with small, uniform crystal sizes throughout the ice sheet. After seeding, we lowered the
room temperature to - 2YC for ice growth for a period of time to achieve the desired ice
thickness. The resulting ice sheet had columnar structure with fine grains (12 mm) at the
top and coarse grains (3--6 mm) at the bottom. The temperature of the ice at the time of
testing was between - 2 and ere.

To characterize an ice sheet, we measured its characteristic length and flex ural strength.
The characteristic length was measured by placing a dead load on a floating ice sheet and
measuring the resulting elastic deflection with a displacement transducer (Sodhi et al..
1982). The flexural strength was measured by pushing the tips of cantilever beams in the
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upward and downward directions and measuring the maximum force and the size of broken
beams (Ashton, 1986).

We conducted three types of beam tests and two types of plate tests by pushing the
floating ice downward. We measured the reaction force during a test by a load cell as the
ice was pushed down. The load cell was installed rigidly on the personnel carriage in the
basin, which could be lowered at a constant velocity of about 4 mm s·· I. We measured the
deflections at a few points with the help of displacement transducers.

To prepare beam and plates, we cut slots in the floating ice sheet with a chain saw,
which was mounted on a platform that could be moved in the transverse direction on rails
installed on the personnel carriage. To cut slots in the transverse direction, we moved the
carriage to the desired location and moved the platform sideways by hand \vith the saw
cutting the ice. To cut slots in the longitudinal direction of the basin, we positioned the savv'
at the desired location on the carriage and moved the carriage with the saw cutting the ice.

3,2. Beam tests

3.2.1. Fixed-end beam tests. Figure 2 shows the experimental setup to push down a
beam with fixed ends. Two slots were cut in an ice sheet to create a beam of floating ice
with its ends attached to the surrounding ice sheet. A vertical load was applied in the middle
of the beam while measuring the deflections at one to three points along the beam.

Figure 3 shows a typical load-versus-deflection plot obtained from a fixed-end beam
test. The load·-deflection plot has a nearly constant slope during the initial stages of loading
or deformation up to about 1.3 kN, Then there is a slight readjustment of load and
deflection, indicating formation of vertical cracks during the test. After that, the slope of
load·deflection plot continuously decreases with increase in deflection, indicating softening
of the ice and/or a decrease in the wedging action. The vertical applied load reaches a
maximum value before finally decreased to low values. In Table I, we have listed the
maximum loads recorded during all tests along with the length, width, and thickness of the
fixed-end beams in each test.

After a test, we always observed two zones of microcracked ice in each of the two half­
beams of ice, as shown in Fig. 4. These zones of microcracked ice formed in the top third
of the thickness in the middle of the beam (where vertical load was applied), and in the
bottom third of the thickness at the ends. We also observed horizontal cleavage cracks that
formed in the middle and at the roots of fixed beams, In a few tests with thick « 80 mm)
ice sheet, the cleavage cracks at the root extended a long distance (~O,10.2 m) into the
ice and occurred at about one-third of the ice thickness from the bottom. In tests with thin
(> 80 mm) ice sheets, cleavage cracks propagated a short distance (~0,05·(J.06 m), as
indicated by small protrusions of ice at the sides of blocks in the bottom third of their

hFloating I
ce Sheet

.
............__~~~..__..~s:'10~t -:-r

---.t

Fig. 2. Experimental setup to push down a beam with fixed cnds.



Vertieal penetration of floating ice sheets

2.5,-----r---....---,-----r---....---,----,---..,---,----,

4281

2.0

z
C. 1.5
~
.3

~~ 1.0
Q)

>

0.5

o ~ ~ 00 00
Center Displacement (mm)

Fig . .1. Plot of load vs deflection from a fixed-end beam test (S-8}.
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Table 1. Beam dimensions and maximum wedging pressure during fixed-end beam tests

L H' h Max. wedglllg pressure
Dale Test number (mml (111111) (mm) (MPal

09/14/94 S-4 2083 298 114 2.747
09/1S/94 S-8 3060 298 117 2.367
09/IS/94 S-IO 8079 295 114 2.302
09/IS/94 S-12 SOOO 300 114 2.261
09/22/94 S-16 1570 298 148 J.173
09/22/94 S-17 3000 292 147 2.387
09;22/94 S-20 2000 290 147 2.157
09/28/94 S-23 ISOO 418 12l 3.254
09:28/94 S-26 ISOO 292 120 .U47
09/29/94 S-29 2030 297 127 2.831
09j29/94 S-.10 2Sl0 290 127 2.911
09:29/94 S-.1 I 30S0 298 132 2.522
09j29:94 S-.12 IS40 296 131 2649
10:03:94 S-35 985 284 8.1 2.642
IOj03/94 S-36 2J50 276 82 116
10:07;94 S-42 752 296 89 2. 765
10:07/94 S-4.1 1480 302 92 2.609
10:07/94 S-44 1900 302 91 2.999
10:07/94 S-45 978 298 92 2J73
1011 1:94 S-SO SOO 290 69 759
Ion 1:94 S-SI 750 283 70 .un1
Ion 1/94 S-52 1000 287 69 \268
Ion L94 S-5.\ 1500 285 71 1 018
10/11/94 S-54 2000 295 68 .1.157
10/14:94 S-61 73S ~87 68 JD6
IOil4/94 S-62 no .112 67 2.922
10; 14/94 S-63 1470 297 68 2.819
10: 14/94 S-64 1975 288 66 2952

thickness. We also observed zones of microcracked ice and three or four vertical mac­
rocracks fanning out into the adjacent ice from the ends of a beam, indicating that the ice
was compressed by the ends of the beam. At times we also observed vertical cracks running
along the length of a beam.

3.2.2. Cantilever beam tests. In a few tests. we cut a slot in the middle of a fixed-end
beam, efrectively creating a pair of cantilever beams. When a load was applied in a similar
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Fig. 4. Zones of microeracked ice in blocks after a fixed-end beam test
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Fig. 5. Plot of load vs tip deflection from a cantilever beam test in which L"". = 486 mm. \1 = 303
mm. Ii = 70.5mm.

manner as for a fixed-end beam, the slot in the middle prevented the development of any
in-plane force, and the cantilever beams failed in bending at the roots. As shown in Fig. 5,
the load increases almost linearly with respect to tip deflection, until the ice fails by fracture
at the roots. We did not observe any zone of microcracking in the broken pieces of the two
cantilever beams. The failure load in these tests was much lower than that for a similar size
beam with fixed ends.

3.2.3. Measurement ol in-plane .!()rces in beam tests. To measure in-plane forces, we
inserted an apparatus between the opposed ends of two cantilever ice beams, and pushed
down at a constant velocity until failure took place. Figure 6 shows the experimental setup
and the apparatus, which consisted of two steel plates with three load cells between them.
The apparatus was suspended with llexible strings (bungee cords) from a crane. We lowered
the apparatus slowly into the slot between the ends of the beams, so that the plates did not
touch the ends of the beams. When the plates were aligned with respect to the beams, the
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Fig. 6. Experimental setup to measure in-plane forces with an apparatus inserted between two
cantilever beams.

hexagonal bolts in the plates were tightened to separate the plates against the ends of the
beams. When the forces, as indicated by the three load cells between the plates, were
approximately equal, we allowed the ice to creep and reduce the preload forces, so as to
make good contact with the steel plates. When the load on the ends of the beams had
relaxed to a low value, the test was conducted with the apparatus pushed down at a constant
velocity.

Figure 7 shows typical plots of the vertical load, the forces as measured by three load
cells, and the in-plane force (i.e., sum of forces measured by three load cells) with respect
to center displacement. Comparing the load deflection plots of vertical loads in Figs 2 and
7, it can be seen that the plot of vertical force has similar characteristics as that for fixed­
end beam tests. As shown in Fig. 7, the in-plane force and the vertical force reach their
maximum values at different displacements or times. An analysis of these data \I\lill be
presented later. In Table 2, we have listed the maximum load and the size of beams used
for this type of test.

3.3. Plate tests
We pushed down the center oflloating ice sheets at a constant velocity of about 4 mm

s- I while measuring the vertical load and the dellections at three points. We applied the
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Fig. 7. Plots of vertical load, furces measured by I.oad cells, and total in-plane force wIth respect to
center displacement IS-27).

load by placing a 406 mm diameter disk of 9 mm thick plywood on top of an ice sheet. In
a few tests, we applied the load using a 152 mm diameter disk, To determine breakthrough
loads of the floating ice sheets with and without wedging action, tests were performed with
two types of boundary conditions on the edges of the ice sheets as described below, We did
not observe any flooding near the load prior to breakthrough.

To simulate an infinite ice sheet in small-scale tests, the extent of a !loating ice sheet
should at least be about 8· 10 times the characteristic length. The \vidth of the model basin
at C:RREL is about 9. 15m, and does not satisfy this requirement during most tests in this
study. Though the proximity of basin walls may have influenced the overall deformation
of Iloating ice sheets, it did not inf1uence the large deformation and fracture pattern in the
vicinity of load. In this study, the breakthrough load is assumed to depend on the load
carrying capacity of the ice sheet in the vicinity of the load, and is, therefore, unalIeeted by
the proximity of the basin walls.

3.3.1. Fixl'dflooling ice sheet. When we pushed down an ice sheet attached to the basin
walls, we observed many (~2030) radial cracks forming around the load shortly after the
start of a test. Some (6 10) of the radial cracks propagated farther from the load than
others. As the test continued, we observed that many (510) circumferential cracks formed
around the load. The sequence of circumferential crack formation was that the first crack
formed farthest from the load, followed by others closer to the load, until the breakthrough
occurred. We also observed interlacing microcracks over large areas between radial cracks
at a distance of about 12m from the center of the load. We believe that this microcracking
formed as a result of compression of the ice in the tangential direction.

Figure 8 shows a typicalload-versus-def1ection plot from tests with an icc sheet fixed
to the basin walls. During the initial stages of loading. the vertical force increases almost
linearly with deflection (UP to about 4.5 kN) until radial cracks form, al which point a
slight unloading takes place, as indicated in the plot. After the formation of radial cracks,
the loaddetlection plot has a few sudden unloadings, indicating the formation of cir­
cumferential cracks. 'rile slope of the joaddel1ection plot decreases continuously until the
load reaches a maximum value. and then continues to decrease gradually until breakthrough
takes place with a sudden drop in load to low values. The load deflection plot is similar to
that of the fixed-end beam tests, except during the period of unloading. This indicates that
a similar process (i.e .. compression of icc) governs the overall failure of a floating ice sheet.
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Fig. 8. Plot of load vs center deflection from a fixed-edge floating ice sheet test (5-47)

Table 2. Beam dimensions during beam tests with apparatus inserted between ends of two cantilever beams

Date

0914'94
0915'94
09'22.94
09 28.94
09'28.94

L ll' h
Test number (mill) (mill} 111"1111)

5-05 2003 280 I 13.0
5-(19 2991 290 I 13.5
5-21 2000 293 146.0
5-27 1500 288 1255
5-:~8 2000 2% 131.0

Table 3. Ice thickness (11), Illaxilllum load (1'), and nominal stress (1'1112) during fixed ice sheet tests

Date

09:0J:94
0901'94
09·09·94
090994
1003:94
IC)03 '94
10.0794
10.1194
10 1194
1014'94
101494

II l' P:h2
Test number (mill) (kN) IkPaj

F-40 59 6.960 1999
[:-41 59 6.568 1887
F-60 63 7.421 1870
F-61 hJ 7.149 1801
5-.,7 80 13.541 21 16
5-;8 71 10.844 2092
5-47 95 17.871 1.980
5-56 69 9086 1908
5-)7 68 8.171 1'''67
5-66 66 9600 2204
5·67 65 6.971. 1650

In Table 3, we have listed the maximum values of the loads recorded during all tests of this
type, along with the ice thicknesscs.

3.3.2. Free/foaling ice sheel. In a portion of an ice sheet, we cut slots around an 8 m
wide and 9 m long area, so that it was free on all sides. When we pushed down in the centre
of the separated ice sheet, we observed that five to seven radial cracks form and propagate
slowly to the edge of the ice sheet. During the first three tests, the width of the slots cut
around the ice sheet was as wide as the width of the chain saw. When we observed that the
failure took place by formation of straight circumferential cracks around the load, forming
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Fig. 9. Plot of load vs center deflection from a free-edge ice sheet test (S-46).

Table 4. Ice thickness (h). maximum load (P). and nominal stress (P/h2) during free ice sheet tests

h P P/h2
Date Test number (null) (kN) (kPa)

09/01/94 1-'-39 60 4.905 1362
09/09/94 F-59 64 2.280 557
10/03/94 5-39 gO 7.860 1228
10:07/94 S-46 93 4.206 4g6
10: I 1/94 5-55 68 4.114 890
1014/94 S·65 65 2.686 636

a closed polygon, we suspected that the surrounding ice sheet may have restrained the
separated plate of ice from expansion, because the slots were not wide enough to avoid
interaction at the edges. Therefore, in the last three tests, we cut a wider slot to eliminate
any chances of restraint from the surrounding ice. We observed that the failure during these
last three tests took place when the radial cracks reached the boundaries, and the tips of a
few wedge-shaped ice pieces broke at the time of failure. We did not observe any micro­
cracking in any portion of the ice sheet after these tests. We observed a little flooding ncar
the load prior to breakthrough.

Figure 9 shows a typical 10ad-versus-deJlection plot from tests with an ice sheet free
on all sides. [n contrast to the loading of a fixed ice sheet, the load in Fig. 9 increases
linearly until radial cracks form, resulting in sudden unloading and increased deJlection.
After formation of radial cracks, the load increases again linearly with the increase in
deflection until the cracks reach the boundary. In Table 4. we have listed the maximum
loads recorded during these tests, along with the ice thicknesses. It should be noted that
the magnitude of loads at which radial cracks begin to form were about the same for fixed
and free boundary conditions, as shown in Figs 8 and 9.

3.4. Discussion
In the following, we analyze the experimental results of the beam and plate tests to

estimate the breakthrough loads of floating ice sheets. Based on observations made during
the beam tests, we propose a simple model to obtain data on the wedging pressure that
develops between the ice blocks during the tests. These data are used in a theoretical model,
based on plastic limit analysis, to predict the breakthrough loads of Jloating icc sheets.
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These predictions are then compared with those obtained from fixed floating ice sheet tests
and other full-scale tests. The validity of scaling laws, as proposed by Slepyan (1990) and
Bazant (1993), for the breakthrough loads of floating ice sheets is also discussed.

3.4.1. Bean1 test results. Peters et at. (1982) considered the collapse of a built-in ( IIxed­
end) beam that is loaded in the middle and restrained from expansion. They assumed that
three plastic hinges, two at the support and one in the middle of the beam, develop resisting
moments through eccentric compressive stresses in a section while ignoring the tensile
stresses.

After fixed-end beam tests. we observed microcracking of ice in zones within each
block in the middle and at the ends of a beam. as shown in Fig. 3. These zones of
microcracking form as a result of wedging pressure acting in the horizontal direction on
the faces of vertical cracks that form during the initial stages of deformation or loading.
Based on this observation, we assume that a uniform pressure q acts uniformly across the
beam width 11' and a portion of ice thickness /3h at the top and at the bottom of each block,
when a vertical force P acts in the middle of a beam of length L, as shown in Fig. 10.
Considering the equilibrium of the forces acting on each block, we get the following
equation for the wedging pressure q from the moment balance about the center of each
block:

q
PL

4wh'fJ(I--/1 6/h)
(5)

where 6 is the relative displacement of the beam center with respect to its ends. It should
be noted that this equation is no! valid for large deflections when the denominator
approaches zero.

As described earlier, we conducted five successful tests by installing an apparatus
between the slots cut in the middle of fixed-end beams to measure the magnitudes of the
in-plane forces caused by the wedging action. Assuming f:I 1/3, we get a direct measure··
men! of wedging pressure by dividing the total in-plane force by the assumed contact
area (11'11/3). To compute the wedging pressure using eqn (5), we used the data on beam
dimensions listed in Table 2. The relative displacement of () is obtained by subtracting the
measured displacement at one end ofa fixed-end beam from that at the center. A comparison
of wedging pressure obtained from measured in-plane forces and that computed from eqn
(5) is shown in Fig. II. COTlsidering the difficulties encountered during direct measurement
of in-plane forces, the comparison is good. This comparison validates estimation of wedging
pressure q from eqn (5).
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Fig. II. Plots of wedging pressure from measured in-plane force and egn (5) with respect to center

displacement: (a) Test S-5. (h) Test S-9. (c) Test S-21. (d) Test S-27. and (e) Test S-28.

For /J = 1/3, we have listed the maximum values of the wedging pressure q in Table I
corresponding to the maximum values of the vertical loads and other beam dimensions
during the fixed-end beam tests. Figure 12 shows a plot of the maximum wedging pressure
q with respect to beam length L listed in Table 1. If the strain or strain rate caused by the
wedging action depended on the beam length, we could expect a decrease in wedging
pressure «(x.L I or L 12) with an increase in beam length. There is some scatter in the plot
of q vs L, but there appears to be no dependence of wedging pressure q on the beam length.
It appears that the wedging pressure that develops on the edges of each block is caused by
local deformation of ice within each block. The wedging pressure q has a range between
2.257 and 3.437 MPa. and its mean and standard deviation are 2.809 and 0.336 MPa,
respectively.
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If the rotation takes place at the centre of a beam, the resisting moment per unit width
of an ice sheet is given by Mo = qh2 f3(1 {J)/2. Using a value of fJ = 1/3. we get an
Mo = qh2/9. The resisting moment per unit length calculated from flexural strength is given
by M f = (irh

2/6 or M r = (i jh2/4 (Meyerhof, 1960), where (if is the flexural strength of ice. An
average value of (if obtained from downward and upward flexural strength tests was about
0.75 MPa. Taking the mean value a = 2.81 MPa, we get a ratio of MaiMf :::::: 2.5, which is
lower than that predicted by Peters et al. (1982). This may be attributed partly to the warm
ice as used in tests during this study.

Cantilever beam tests were done to demonstrate that the vertical forces to cause tlexural
failure in similar size beams are lower than those that cause I~lilure with wedging action.
The results of the cantilever beam tests may be used to predict the loads at which vertical
cracks form during the initial stages of fixed-end beam deformation or loading. Estimates
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of loads based on elastic analysis (Wyman, 1950) and flexural strength for the prediction
of the load to form the first crack in a sheet agree reasonably weIl with those measured in
this study.

3.4.2. Plate tests results. The maximum vertical loads recorded during plate tests with
fixed and free boundary conditions are given in Tables 3 and 4. The breakthrough loads
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Fig. 13. Plot of breakthrough load vs ice thickness; two lines are plots of P = 1750h' (Gold. 1971.1

and P = I934h' (present study).

from the fixed ice sheet tests (Table 3) are plotted with respect to ice thickness in Fig. 13,
where the data from full-scale tests (Frankenstein 1963, 1966; Lichtenberger et al., 1974)
are also shown.

To compare these data with data from other sources. the breakthrough load is divided
by the square of the ice thickness to obtain a nominal stress (or empirical factor) :x in
kilopascals (kPa). In the present study. the range of'Y. is between 1650 and 2204 kPa for
the fixed ice sheets, and the mean and standard deviation are 1934 and 164 kPa, respectively.
Mean and standard deviation of :x from the free ice sheet tests are 860 and 366 kPa.
respectively. The mean value of rx for the free ice sheets is less than half of that f()r the fixed
ice sheets, but the standard deviation of rJ. for fixed ice sheets is less than that for free ice
sheets. The higher standard deviation for free ice sheets can perhaps be attributed to the
confinement offered by surrounding ice during the first three tests. The reason for the
difference in the mean values of:x may be attributed to l.he difference in constraint provided
by the boundaries of fixed and free ice sheets. After formation of radial cracks during
loading of a free ice sheet, the cracks propagate to the boundary upon further loading, and
the ice sheet disintegrates into pieces and is thereby unable to carry any load. In contrast,
the radial cracks in a fixed ice sheet do not propagate any further after their formation,
and the wedges formed by radial cracking push against each other in response to further
loading of an ice sheet. The existence of wedging action in fixed ice sheets is the main reason
that its load-carrying capacity is higher than that for free ice sheets. The two lines in Fig.
13 are plots of P = I750h 2 ((10Id, 1971) and P '"= 1934112

, obtained from the results of fixed
ice sheet tests.

As discllssed earlier, the estimates of the collapse load according to plastic limit analysis
for the following boundary conditions are: P 2IT/lito for a simply supported boundary
condition at the edge of the plate, and P ~ 4nMofor a fixed or built-in boundary condition.
Recalling that Mo = qh2/9 and the mean value of q is 2.4 MPa for the ice used in the present
study. we get P = 1962h2 for the simply supported boundary condition, and P = 3924h2

for the fixed or built-in boundary condition. It should be noted that the value of rJ. 1962
kPa is close to the mean value of:x 1934 k Pa obtained from small-scale tests in this study.
The estimated collapse load for the simply supported boundary condition is close to
the breakthrough load obtained from the full-scale and small-scale tests. Moreover, the
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formation of many circumferential cracks also supports the assumption of the simply
supported boundary condition, as discussed by Sodhi (1995).

The results of this study show that it is possible to predict the breakthrough load of a
floating ice sheet by conducting a few fixed-end beam tests and measuring the relative
displacement () and the applied load to cause failure of the beam. Using eqn (5), we can
determine the maximum wedging pressure q that ice can resist, and the maximum resisting
moment (Mil = qIl2!9) per unit length. Using the results of plastic limit analysis, we can
then predict the breakthrough load for the simply supported boundary condition, i.e.,
P == 27[Al l1 .

Though the plots of breakthrough load vs ice thickness in Fig. 13 from the field tests
and the small-scale tests appear to have the same trend, there are three factors that need to
be considered: (I) rate of loading, (2) salinity, and (3) Ice temperature. These parameters
affect the creep properties of ice. The rate at which the ice sheet moved near the area of
loading during field tests is about 0.1 mm s I, whereas it was 4 mn1 s I during small-scale
tests. The ice temperature during small-scale tests was about - Ie whereas it was in the
range of - 10 and O·C. All small-scale tests were done with freshwater ice. whereas one series
of lield tests was done on sea ice. Though the effect of these factors on the breakthrough load
need further investigation, we believe that their effects are secondary to those of ice thickness
(Sodhi, 1(95)

3.4.3. Scaling fall's. Slepyan (1990) and Bazant and Li (1994) investigated the size
effect of a radially cracked floating icc sheet. For the propagation of radial cracks, they
found that the nominal stress (load divided by the sq uare of ice thickncss Pill") is pro­
portional to (ice thickness)' x, or equivalent to (characteristic length) ] . However they
did not find any size elrect for the maximum load, because this load is assumed to occur at
the initiation of circumferential cracks, which is governed by a strength criterion. In
discussing the scaling laws in the mechanics of failure, Bazant (1993) concluded that the
nominal strength of a structure is independent of its size when the failure condition is
expressed in terms of stress or strain only, including elasticity with strength limit, plasticity.
and continuum damage mechanics. When the failure condition involves both stress and
energy per unit area (e.g. for fracture), the scaling law represents a gradual transition from
the strength theory, i.e., (size)lI, to linear elastic fracture mechanics, i.e" (sizel 12. According
to observations made during full-scale and small-scale experiments, the breakthrough docs
not take place immediately after the formation ofcircumferential cracks, because of wedging
action between radially cracked ice sheets. Sodhi (1995) has presented a theoretical model
in which the work done by the load causes dissipation of energy in compressing ice in the
tangential direction. Because the nominal stress (P/Ir") depends on the compression strength
of ice, there is no scale etfect. This is also supported by the results of full-scale and small­
scale experiments, as shown in Fig. 13.

4. FLLL-SCALE MEASLRE/vIENTS

We used a methodology based on the Archimedean principle to measure the icc
penetration force during the ICEX-93 program (Dane, 1993). When a short-term force is
applied to a floating ice sheeL the force is eq ual to the weight of water displaced as a result
of [ocal deformation of the icc sheet around the load (Ashton, 1986). The measurement of
uplifting force can then be accomplished by measuring the vertical deflections at a few
points along a radial line in the vicinity of the load and then obtaining the volume of the
displaced water. We verified this methodology in the laboratory (Sodhi, 1989) before using
it in the licld.

During the ICEX-93 program, we measured the vertical deflections with the help of
pressure transducers installed at a few points along two separate tubes filled with a solution
of glycol, as shown in Fig. 14. We analyzed the data from pressure transducers to obtain
plots of the vertical displacement vs radial distances from the sail. We assumed an axi­
symmetric displacement of the icc sheet around the sail and integrated the plots of dis­
placement vs radial distance to obtain the volume and the weight of displaced water. which
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is equal to the force during uplifting of a floating ice sheet, at each scan of the data. The
maximum force in the plot of uplifting force is taken to be the ice penetration force, Figure
13 shows plots of the ice penetration force vs ice thickness from the ICEX-93 field program,
The ICEX-93 data lie close to the lines obtained from theoretical and small-scale exper­
imental results and the empirical relationship proposed by Gold (1971), However, there is
a large scatter in the data because of errors incorporated in the field measurement

5. CONCLUSION

We took three approaches to determine the force requircd to penetrate a l10ating ice
sheet: (I) plastic limit analysis, (2) small-scale experiments, and (3) full-scale measurements
in the field. During the vertical loading of a l10ating ice sheet, radial and circumferential
cracks form as a result of deformation in the ice. Despite these cracks, the ice sheet is able
to support a load because the cracked ice is surrounded by intact ice, and further defor­
mation in the ice is resisted by the development of in-plane ".,-edging pressure in the top or
bottom portions of an ice sheet A series of beam and plate tests was conducted in the
laboratory to understand the wedging action. The data from the beam tests reveal that
compressive stresses develop in the top or bottom third of the ice thickness to resist
deformation. This model is validated by direct measurement of in-plane forces by inserting
an apparatus between the opposed free ends of two cantilever beams. The wedging pressures
obtained from the measured in-plane force agree well with those obtained from the equi­
librium of each block. Breakthrough loads of fixed ice sheets were about twice those
obtained from tests with ice plates having free boundary conditions. This difference is
attributed to the wedging action that is caused by the restraint imposed by the surrounding
ice sheet on the fracture scale in the vicinity of the load. Data from the beam tests are also
used to predict the breakthrough loads of l10ating ice sheets, and these predictions compare
well with the breakthrough loads obtained from small-scale and full-scale tests on l10ating
ice sheets.
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